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The Role of Statistical Mechanics in
Classical Physics*

by DAVID LAVIS

INTRODUCTION

There exists a class {&} of systems, any member & of which can be
regarded on the one hand as a mechanical system &* and on the other
as a thermodynamic system ‘7. The mechanical system & is charac-
terised by its classical or quantum mechanical state which evolves with
time according to the appropriate differential equation (Hamilton’s
equation or Schrodinger’s equation respectively). The thermodynamic
system (T is characterised by the assumption that, if undisturbed for a
sufficiently long period of time, it will attain a state called its equilibrium
state. Such an equilibrium state is specified by a small set of parameters,
these being interrelated by the laws of thermodynamics. The primary réle
of statistical mechanics is to interpret the parameters of #(™ and to
derive the relationships between them in terms of the properties of &40,

We may enquire whether this task could be performed only by a theory
with a probabalistic component. One apparently obvious affirmative
answer to this question would be of the following kind: ‘Some proba-
balistic component is necessary because of the quantum nature of matter.
Probability theory is involved because of its essential réle in quantum
theory’. Such an answer is inadequate on two counts. First because of
the existence and relative success of classical statistical mechanics and
secondly because of the dual réle of probability theory in quantum
statistics. From the point of view of this discussion quantum considerations
are irrelevant and we shall henceforth suppose & to be a classical
mechanical model. The question of the necessity or otherwise of statistical
mechanics remains open and will arise in the course of the discussion.

It must be emphasised at the outset that the aim of this paper is to give a
possible rational reconstruction of the current programmes of statistical
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mechanics. It is necessary to stress the motive of rational reconstruction
because the development of statistical mechanics has been such that a
survey entirely in terms of the declared views of writers in the field would
on the one hand be confusing and on the other leave many gaps. Certain

The mechanical

system ™
LEVEL 1 The system has a large The system is
number of degrees of incompletely
freedom specified
Probability theory: Probability theory:
LEVEL 2 the scientific view the logical view
The ergodic The énsemble The evolution
method method method
LEVEL 3
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LEVEL 4 The microcanonical | /

distribution

U The canonical »
distribution

The thermodynamic
system "

terms (e.g. ‘ensemble’) are used, as we shall see, in different senses by
different writers. It is also the case that many of those most concerned
with the development of statistical mechanics have left certain key aspects
of their programmes implicit or ambiguous. This is particularly so with
respect to their views on probability theory. The attempt has been made
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therefore to construct the possible routes from mechanics to thermo-
dynamics in terms of concepts rather than personalities. To aid this task
the material of the discussion has been divided into four levels as shown
in the diagram. Level 1 contains classical mechanics together with the
two properties which would seem, separately or together, to characterise
those mechanical systems which give rise to thermodynamic behaviour.
Level 2 contains the philosophical positions with respect to probability
theory which would seem to provide sufficient support for the construction
of statistical mechanics.! Level 3 contains most of the disputed aspects of
the derivation of statistical mechanics. It is in itself a mainly mathematical
level but the choices between different approaches within it are to some
extent determined by the philosophical considerations arising from level
2.2 Level 4 is common ground for all workers in statistical mechanics.
There are differences in the degree of mathematical sophistication with
which the material is manipulated, but there is little doubt that the
microcanonical and canonical distributions are a necessary part of equi-
librium statistical mechanics.® The arrows in the diagram represent my
personal opinion as to the possible rational routes from level 1 to level 4.
Part of the purpose of this paper is to attempt to expose the weaknesses
of these various routes. Since levels 1 and 4 present the least problems
and since they represent the beginning and end points of all the pro-
grammes under discussion we shall consider them first, after which we
shall deal with the problematic areas represented in levels 2 and 3.

LEVEL 1I

Let & be a stationary Hamiltonian system of /N identical microsystems
(gas molecules, dipoles ezc.) each with n degrees of freedom (translational,
rotational efc.). The macroscopic dimension of the system is given by one
extensive parameter /1.4 The system has the following properties:

(?) The state of the system at time ¢ is given by the phase vector

(P(2), 4(1)) = (Pa(2), P2(2); - - -» P (1), Au(2), Qe(2), - - > q4(2)) Which specifies
a point in the 2nN-dimensional phase space I', pi(f) and qi(f) being

1 I agree with the view of Hobson ([1971], p. 33) that the subjective theory of Ramsey and
de Finetti has no relevance to the physical sciences. The grouping of other points of view
into two traditions, labelled ‘logical’ and ‘scientific’ follows the classification of Gillies
[1973] except that he includes the subjective position within the logical tradition.

2 Or, in the case of the ergodic method, by the attempt to by-pass level 2.

3 'This remark should not be taken to imply that no alternative link between mechanics
and thermodynamics, avoiding statistical mechanics altogether, is possible (seep. 259, n. 2).

4 For the sake of simplicity we consider only identical microsystems and only one extensive
parameter. In general there may be more than one type of microsystem and more than
one extensive parameter. Typical extensive parameters are the volume and the magnetic
and electric moments of the system.
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respectively the momentum and configuration vectors of the 7th micro-
system.

(77) There exists a continuous differentiable Hamiltonian function H on
I't and the evolution of the phase point in I" satisfies Hamilton’s equation

2 (0, @)= (— Vo VIH(P, 9). (M

It is convenient, although not essential, to suppose that the value of the
Hamiltonian is the total energy of the system.

It is a standard result of the theory of differential equations that, given
a point (P, qo) in I, there exists a solution of Hamilton’s equation which
determines a unique path of the system through (p, q,). The phase point
of the system moves along the path, passing through (p,, q,) at time ¢ = o.
We have therefore a set of continuous mappings of I into itself para-
metrised by #. This set is called a Hamiltonian flow. An integral g of the
equation of motion is a function of (p, q) and ¢ whose value remains
unchanged along a path. The equation to be satisfied by g is

B VH. Vg +V,H. Vg =o. (2)
A time independent integral is called a constant of the motion. The equation
of motion will have (27pN—1) local constants of motion (constants which
remain unchanged in value at least for limited periods of time and for
certain regions of I'). Of these there will be some which are constant
throughout phase space and for all time; these are called global. A global
constant of motion is called isolating if it defines a hypersurface in phase
space. For a fluid system, consisting of particles which undergo perfectly
elastic collisions at the boundaries of the container, the components of
the total linear momentum will be local, but not global, constants. The
Hamiltonian will however represent an isolating constant. A path of the
system with at least one point on a particular energy hypersurface
2z ={(p, 9): H(p, q) = E} will lie entirely in that hypersurface.

In defining the mechanical system ¥ we have simply outlined the
general characteristics of a stationary Hamiltonian system. It is usually
argued, however, that there is some additional feature peculiar to those
kinds of mechanical systems which can be linked to thermodynamic
systems, even though there is no general agreement on the nature of this
feature. According to Grad [1967]: ‘The single feature which distinguishes

1 To be accurate we have of course a set of Hamiltonians parametrised by N and AM),
On these we impose the condition that H/N is finite in the thermodynamic limit N—co,
AM >0, NJADM finite. A detailed analysis of the mathematics involved in taking the
thermodynamic limit is given by Ruelle [1969].
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statistical mechanics from ordinary mechanics is the large number of
degrees of freedom’. On the other hand there are those (e.g. Jaynes [1957],
Hobson [1971]) who would deny that statistical mechanics is exclusively
concerned with large systems. For them it ‘is the study of incompletely
specified systems’ (Hobson [1971], p. 2).

LEVEL 4

For the thermodynamic system &7 the variables can be divided into
two sets. There are the independent variables which, in an experimental
situation are directly controlled by the experimenter. The remaining
dependent variables will, for fixed values of the independent variables,
change their values until they reach an equilibrium state, after which they
remain constant. The thermodynamic system (7, at equilibrium, has
the following properties:

(7) If undisturbed all variables of the system maintain constant values.

(77) The macroscopic dimension of the system is given by one extensive
parameter /AT and there exists a ‘generalised force’ F(™ such that an
increment of work dWW, performed on the system by its environment, as
it moves through a succession of equilibrium states increasing 4™ by
dAD, is given by dW = F(DdA(D 1

(72) The thermodynamic energy U, the entropy S and the absolute
temperature T are defined. Any incremental change of state (dU, dS, dA‘P)
for which the system moves through a succession of equilibrium states
must satisfy the fundamental thermodynamic relationship

dU = TdS+FTdAD. 3)

By including a discussion of the microcanonical and canonical distribu-
tions in level 4 (see diagram) we introduce, at this level, the mathematics
of what is usually referred to as ‘equilibrium statistical mechanics’. I
argue that this is legitimate for two reasons:

(1) Although this work can be, and is, formulated in a variety of
different ways, it is common to all attempts to relate ¥ and &¢(D.2

(2) The statistical connotation imposed on the mathematical structure,
in most texts and on some interpretations, is not integral to it.3

1If AT is the volume then F'T’ is minus the pressure exerted by the environment; if
AT is the magnetic or electric moment then FT? is the corresponding field. Again we
have restricted the discussion to systems with only one extensive parameter. We shall
also refrain from discussing systems which exchange matter with their environment.

*To my knowledge, the only exception to this is the attempt to justify (some parts of)
thermodynamics using the methods of molecular dynamics (see e.g. Alder and Wainwright
[1959], [1960], [1962]).

31 shall argue that it is one of the aims of the ergodic method to eliminate statistical
connotations.

R
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In other words what I wish to do, at this level, is to delineate those
parts of the mathematics which do not depend on philosophical pre-
suppositions. The questions on which there is real disagreement are
contained in level 3. We now list the problems which, in a formal sense,
will be resolved at this level. We need
(P1) A definition of equilibrium in terms of the properties of £,

(P2) A connecting link between the macroscopic properties of &¢* and
P,

The method of solution of these problems is on the following lines. Let

p be a function of (p, q) and ¢ which defines a measure on I". The measure

MTy,] of the set y, in I" at time # is given by

Miy] = f I, 91 @

Ve
We suppose that the measure is normalised (i.e. M[I'] = 1) and that the
measure of any set y, as it moves with the Hamiltonian flow is preserved.
It is not difficult to show?! that a necessary and sufficient condition for the
measure density function to be that of a preserved measure is that it
satisfies Liouville’s equation

op

e
We now consider the extended dynamic system {p, &*’} consisting of
F M together with the normalised measure preserving density function p.
It is in terms of this extended system that P1 and P2 are solved. The
solutions are as follows:

Vo (pV,H)+V, . (pV,H) = 02 5)

(S1) The system is in equilibrium if the measure density function is not
an explicit function of time.

(S2) Related to any property X of the thermodynamic system (7,
with the exception of the entropy S and the absolute temperature
T, there is for {p, M} a phase function X‘*, The variable X7
is given by the mean value of X(* with respect to p, 7.e.

XD = de (P, )X *(p, q). (6)
r
At equilibrium the thermodynamic entropy is given by
S = —k [ dTip, o) n ({N)p(p, 3, )
r

! The mathematics is the same as that used to prove the hydrodynamic continuity equation,

2 Since (— VY H, V,H) is an irrotational vector field Liouville’s equation is identical to
its adjoint, which is equation (2), the equation satisfied by integrals of the equation of
motion.
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where k is Boltzmann’s constant and ¢(/V) is the Boltzmann correcting
factor.!

If, as we assume, the value of the Hamiltonian H is the total energy of
the system, then the phase function corresponding to the thermodynamic
energy U is the Hamiltonian. With respect to the pair of variables F*7
and A two situations can arise:

(a) If the system is mechanically isolated then A‘™ is an independent
variable, the corresponding phase function A is a constant and we have
AT = A, The phase function corresponding to F( is 0H[0AMP,
This phase function will vary as the phase point moves along its path in
phase space. An illustration of this situation is that of a volume of fluid
in a container with rigid walls. Here the volume is the same, interpreted
as either a mechanical or thermodynamic quantity. We see however that
the force on the walls of the container arises from a large number of
discrete impulses caused by the impacts on it of the particles of the fluid.
The phase function corresponding to the pressure of the gas is the force
per unit area averaged over the surface of the container. This quantity,
which could be called the ‘microscopic pressure of the fluid’ will fluctuate
with time unlike the corresponding thermodynamic pressure.

(b) If the system is in meehanical equilibrium with its environment then
the generalized force F(7 is determined by the environment and it is the
mechanical extensive variable 4¢* which will fluctuate. This, for a fluid
system, would correspond to the case where one wall of the container is
replaced by a piston. The pressure of the fluid is now a constant, given
by the force per unit area exerted from outside on the piston. The ‘micro-
scopic volume’ of the fluid will now fluctuate as the piston vibrates under
the influence of particle impacts.

Since equilibrium fluctuations of dependent variables can, for physical
systems, be experimentally detected (see e.g. MacDonald [1962]) the
mechanical viewpoint here represents a positive advance over that of
classical thermodynamics.

There remains the problem:

(P3) We need to know the equilibrium forms of the measure density
function corresponding to particular thermodynamic conditions.

There are for any particular system a variety of possible thermodynamic
conditions. In this paper we shall consider only two for which problem
P3 is solved in the following way:

1 The precise form of ¢(IN), which is designed to avoid the difficulties of Gibbs’s paradox
and to give identity, in the case of a perfect gas, with the corresponding formulae of
quantum statistics, is determined by the physical system under investigation. We do
not need an independent formula for the absolute temperature. Once the form for
entropy is established the temperature arises from the thermodynamic procedures.
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(S3) For an isolated system with energy E the phase point moves entirely
on the energy surface 2;. The natural (uniform) measure on the
energy shell {(p, q):E—34E < H(p, q) < E+3}4E} is preserved
by the Hamiltonian flow. In the limit 4E — o0 a preserved measure,
called the microcanonical distribution, is induced on X, in terms of

which
dX
xm— 1t j‘ E Xon(p, 8
o(E) s, IVH(P’q)I (P, 9) (8)
where
dx
———— E >
w(E) = {L |VH(p, q)| ° ©)
o) E <o

is the structure function of the system.

For a system in thermal contact with its environment at absolute
temperature T the measure density function is that of the canonical
distribution which is given by

exp (—H(p, 9)/kT) (10)
dI' exp (—H(p, q)/kT)

r

p(p; q) =
J

Use of the canonical distribution and the formulae (6) and (77) of S2 leads
very simply (see e.g. Hill [1956]) to the fundamental thermodynamic
relationship given above. We are therefore left with two problems. We
need to justify

(P4) The use of the measure density function to relate the variables of
(D and P,
(P5) The equilibrium forms for the measure density function.

These are the problems which must be tackled at levels 2 and 3. We
should however note before passing to these levels that it is not essential
to give independent justifications of the microcanonical and canonical
distributions. A system in thermal equilibrium with its environment can
be taken to be part 4 of an isolated system of which the remainder, part B,
is taken to be the environment of 4. If 4 and B are assumed to be only
weakly interacting® then the canonical distribution can be derived by
taking the asymptotic limit as B becomes infinite.? The basic problem is
therefore the justification of the microcanonical distribution.

1 The Hamiltonian of the total system is the sum of the Hamiltonians of 4 and B.

2 Using the central limit theorem (Khinchin [1949]) or the method of steepest descents
(Kubo [1965]) this can be shown on the basis of certain reasonable mathematical
assumptions.
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LEVEL 2

At this level we discuss the ways in which probability theory is used as a
means of justifying the use of a measure density function to relate the
variables of ¢ and &¢™. As can be seen from the diagram the ergodic
method is alone in its attempt to relate equilibrium thermodynamics and
the underlying mechanical structure without resort to this kind of justifica-
tion. It will not therefore feature in our discussion until level three. The
common feature of all the approaches described here is that, on some
interpretation or another, the measure density function emerges as a
probability density function.

One of the difficulties of discussing the use of probability concepts in
statistical mechanics is that, in much of the literature on the subject, these
concepts are introduced in a rather informal manner. This is a tradition
in statistical mechanics which dates from the works of Boltzmann
([1896]) and Gibbs ([1902])' and which persists to some extent until
the present day. Apart therefore from those occasions when we are con-
sidering a writer who makes specific efforts to state his views on probability
theory? we shall need to be somewhat tentative in classifying authors into
one camp or another.

The Logical View

This may be characterised by the claim that we can ‘cognise correctly a
logical connection between one set of propositions which we call our
evidence and which we suppose ourselves to know, and another set which
we call our conclusions, and to which we attach more or less weight
according to the grounds supplied by the first. . . . It is not straining the
use of words to speak of this as the relation of probability. . . . No proposi-
tion is in itself either probable or improbable, . .. and the probability of
the same statement varies with the evidence presented ... (Keynes
[1921], quoted by Gillies [1973], p. 8). In the context of statistical mechanics
it is perhaps more appropriate to refer to data or information rather than
to evidence. A complete set of data for the mechanical system & would
allow us to solve the equations of motion. The rationale for the use of
probability theory, in the logical tradition, is therefore the need to deal
with a system for which he information is incomplete (see diagram).® On

! With respect to Boltzmann and Gibbs this is not surprising in view of the time at which
they were writing.

2 This is true of those authors like Jaynes and Hobson who use the information theory
approach.

# The logical view is sometimes referred to as the ‘ignorance view’ although, as we shall
see, the ignorance method at level 3 is only one of the possible methods which can adopt
this view of probability.
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the basis of a particular set of data we must derive in some way the ‘best’
probability density function for the system. This point of view features in
the development of statistical mechanics in two ways. In the first of these
it is closely linked to the justification of the microcanonical distribution.
It will be recalled that the microcanonical distribution purports to be that
which is appropriate to an isolated system. The information which we
have about such a system consists of some value E for the total energy. The
Keynesian Principle of Indifference leads to the use of a probability density
function zero outside of, and uniform within, the energy shell {(p, q):E
—34E < H(p, q) < E+34E} and from this we derive the micro-
canonical distribution in the limit 4E — o. This would seem to be the
approach of Tolman ([1938]), although we must be rather careful in
analysing his writings because of his use of the idea of ensembles (see
below). A more recent and developed approach within the logical tradition
is the ignorance method of Jaynes ([1957], [1965], [1967]) and Hobson
([1971]). These writers adopt a specific principle by means of which,
given a set of data, a unique (best) probability assignment can be derived.
For Jaynes this is the Principle of Maximum Entropy. He identifies the
concept of entropy as defined by Shannon in information theory (see
Shannon and Weaver [1949]) with entropy in statistical mechanics; the
appropriate probability distribution is the one which maximises this
entropy relative to the given set of data and the thermodynamic entropy
is equal to the maximum value of the statistical mechanical entropy.
Hobson’s formulation differs from this in detail but is ultimately equivalent.
He derives an expression for the uncertainty in a probability distribution
and adopts the principle (called by him Faynes’ Principle) that the ap-
propriate probability distribution is that which maximises the uncertainty
relative to the given data. It is only at a later stage that identification is
made between entropy and uncertainty. The advantage of Hobson’s
formulation, at this point, as compared to that of Jaynes, is that it avoids
the immediate (and tempting) conflation of the information theory and
thermodynamic concepts of entropy. Apart from these slight differences
it is clear that, for both Jaynes and Hobson, the appropriate density for a
system for which the datum consists simply in the restriction of the phase
point to an energy shell is that given by the Principle of Indifference.
Hobson claims (probably correctly, although see the discussion below)
that T'olman [1938] shares his view that statistical mechanics is the study
of incompletely specified systems. He also argues that Gibbs rejected
both the ergodic method and the viewpoint that statistical mechanics is

1 The uniform distribution over the energy surface Zg is not preserved by the Hamiltonian
flow.
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the study of large systems and that he must therefore have been to some
extent an early member of the same school.

The Scientific View

This view may be characterised by the fact that it considers ‘the theory
of probability as a science of the same order as geometry or theoretical
mechanics’ (von Mises [1957], p. vii). In this tradition the probabalistic
properties of the system under investigation emerge if we consider the
results of a large number of identical® operations on the system. For von
Mises (see e.g. von Mises [1957], p. 29) this large number of operations or
events is the collective; the probability of a particular outcome is then
defined as the limit of the relative frequency of this outcome in the collective,
as the size of the collective increases to infinity. For Popper on the other
hand (see Popper [1959]) the collective, rather than providing a means of
defining probability, serves to reveal the latent propensity of the system
to behave in a certain way.? The idea of the collective features in statistical
mechanics in two, more or less distinct, ways. In the first of these the
behaviours of the individual microsystems, or particles, constitute the
events and the collective is the mechanical system as a whole. This is the
point of view of von Mises, when he asserts (von Mises [1957], p. 182)
that ‘A volume of gas containing a great number of molecules appears . . .
as a system not different in principle from the automatic lottery machine.
...”8 In this context we are concerned about assigning a probability density
function to a single particle and the crucial characteristic of the system
is that it has a large number of particles (or degrees of freedom). The
second way in which the idea of the collective features in statistical
mechanics is in the situation in which we are concerned about the
properties, not of an individual particle, but of the whole system. We
may, for example, be concerned with the total energy of the system. For
a system of particles whose interaction is given in terms of a pairwise
potential function, the total energy of the system is not reducable to the
sum of individual particle energies and the von Mises viewpoint is in-
applicable. The method here is to take the various possible behaviours
of the whole system as the events and to consider a collective of macro-
scopically identical systems. This collective is called an ensemble. The
idea of an ensemble of systems was introduced by Gibbs. His idea was

! Identical in the ‘macroscopic’ sense that repeated throws of the same die are identical.

2 There are of course, besides the relative frequency and propensity interpretations, other
variants of the scientific view (see Gillies [1973]).

# The automatic lottery machine is designed to mix the lottery slips by shaking in such a
way as to make ‘it impossible to follow the fate of one of them. . . . (It is provided with)
some mechanism which would eject a lot through a funnel after a sufficient period of
shaking the container’ (von Mises [1957], p. 177).
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that we imagine the phase space I' to be filled with phase points of ‘a
great number of independent systems, identical in nature, but differing
in phase’ (Gibbs [1902], p. 5). Dividing the density of phase points by
the number of members of the ensemble and taking the limit, in which the
number of members of the ensemble and the density of phase points
become large, their quotient remaining finite, produces a normalised
density on phase space which is taken to be a probability density function.
Although this way of producing the probability density function has a
strong flavour of the von Mises relative frequency interpretation it is not
entirely clear, from Gibbs’ discussion, that this was his intention. It is
certainly true, as Hobson points out, that Gibbs believed that “The laws
of statistical mechanics apply to conservative systems of any number of
degrees of freedom, ...’ (Gibbs [1902], p. viii). But we have seen that a
scientific interpretation of probability, using an ensemble, is not restricted
to systems with a large number of degrees of freedom. It is only the von
Mises viewpoint, which takes the system itself as the collective, which is
so restricted. In the case where the ensemble is the collective, it is the
number of members of the ensemble which is large. It could however be
argued (and this I think is the essence of Hobson’s point) that if we are
to introduce probability at all then it must be because exact mechanical
calculations are not viable. Since it appears that this inviability arises,
either because of the large number of degrees of freedom, or because the
system is not completely specified, then Gibbs must have taken the latter
view with the concomitant logical approach to probability. In this case the
ensemble must be regarded as a heuristic aid to understanding.

Since the time of Gibbs it has needed a considerable act of will on the
part of teachers and researchers in statistical mechanics to avoid all
references to ensembles, so much have they become part of the language
of the subject. It is fairly clear that, for at least some writers of textbooks
(e.g. Hill [1956]), the ensemble is a means of defining probability after the
manner of von Mises. But in most cases its role is rather more confusing.
Particularly interesting in this respect is the work of Tolman ([1938]).
He begins his analysis by using an ensemble of systems in conjunction
with the Principle of Indifference. He assumes that ‘the phase point for a
given system (of the ensemble) is just as likely to be in one region of the
phase space as in any other region of the same extent which corresponds
equally well with what knowledge we do have as to the condition of the
system’ (Tolman [1938], p. 60). This remark seems to support Hobson’s
contention that his view of probability is the logical one. It must however
be born in mind that an important aspect of the logical view is that prob-
ability is a relationship between a set of data and our knowledge of a single
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system. The weighted average of a phase function taken with respect to
the probability density function is the expectation value which reflects in
some way our expectations about the system, based on our knowledge.
For Tolman this average is the ensemble average. For him it provides
results which ‘are to be regarded as true on the average for the systems
in an appropriately chosen ensemble rather than as necessarily true in any
individual case’ (Tolman [1938], p. 63). This remark has an ‘objective’
scientific ring which accords ill with Keynes’ comments on probability
quoted above.

LEVEL 3
The Ergodic Method

Let v be a subset of the phase space I" which is invariant with respect to
the Hamiltonian flow and let p be a time-independent density function on
y which is preserved by the flow and for which y has total measure unity.
It is supposed that X is a phase function integrable over y. It is argued
that a measurement of the thermodynamic quantity X(™ corresponds to
the average X(py, 9o, 7) of X‘™ over a period of time 7, computed along a
path of the system beginning from the point (py, q,) in y. It is assumed
that = is long with respect to (a) the microscopic correlation time, (b) the
relaxation time of macroscopic variables and (c) the time taken to destroy
purely local constants of motion. On the basis of these assumptions it is
further argued that the result of the measurement is effectively the infinite
time average obtained by allowing 7 to tend to infinity. For this view of
measurement to be meaningful it is of course necessary to show, not only
that this time limit exists, but also that it is independent of the point
(Po» 9o)- Let X be the average of X over y with respect to the measure
density function p. In terms of this the following results were proved by
Birkhoff ([1931]):!

() lim X(py, Qo 7) = X(Py, qo) exists almost everywhere in y (i.e.

T ©

except possibly for a set of measure zero with respect to p).

(7) X is a constant of motion almost everywhere in .

(i) X =X = X.
Let us put aside, for the moment, any doubts which arise from the existence
of exceptional points and examine how these results affect the definition
of measurement. It is clear that (@) if X is a constant almost everywhere
in y then X = X and hence from (@5) X = X holds almost everywhere
in y, (b) if X = X holds almost everywhere in y then X is a constant
almost everywhere in y. If X = X holds almost everywhere in v, for all

1 Birkhoff’s paper contains an explicit proof only of (¢). Results (i) and (zZ) are trivial
consequences of the main result.
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phase functions integrable over y, then the system is said to be ergodic.
We see therefore that, for ergodic systems, we may (almost) legitimately
write o

XM"=X (11)
which is the relationship (6) between X (™ and X ) proposed in S2 level
4, with p identically zero at all points in I" not belonging to y.

It would be tempting to suppose that ergodicity has removed the
statistics from statistical mechanics by establishing the proposed relation-
ship between X? and X, with p as an uninterpreted measure density
function used simply as a tool to calculate time averages. The difficulty in
accepting this point of view arises if we consider what we are doing by
neglecting the set of exceptional points. We are supposing that a measure-
ment is never (or hardly ever) made on a system which at the beginning
of the measurement has phase point (p,, q,) belonging to that set of points
of y for which the infinite time average does not exist. In supposing that
such a situation never in practice occurs we have tacitly assumed some
probabalistic interpretation for p in terms of which sets of zero measure
with respect to p have zero probability. Nevertheless, and accepting this
slight obeisance in the direction of an interpreted probability, it would
still seem to be useful to prove the ergodicity of a system.

The original ergodic hypothesis (usually attributed to Boltzmann, but
see Brush [1964]) assumed that the path of the system passed through
every point of y. Since X is a constant of motion it is clear that this hypo-
thesis is sufficient to establish that X is a constant on y. It is equally clear,
on measure theoretic grounds,! that the ergodic hypothesis is false. An
alternative quasi-ergodic hypothesis, to the effect that the path of the system
passes arbitrarily close to every point of y, has not proved sufficient to
establish ergodicity, although it is certainly necessary. There is however
a condition, both necessary and sufficient, which is intuitively somewhat
similar to the quasi-ergodic hypothesis. To prove the necessity of the
quasi-ergodic hypothesis we would assume that, given a particular path /
of the system, there exists a point P of y for which a neighbourhood ¢(P)
of P contains no points of /. This is clearly impossible for an ergodic system
since we could arbitrarily change the value of the phase function on ¢(P),

1 The path of the system is of measure zero in y. A straightforward proof that the ergodic
hypothesis is false is as follows. Let P and P’ be two points of y. Since the path of the
system has a unique tangent direction at every point there are at most two arcs of the
path joining P to P’. Let o be an arc joining P to P’ which is neither of the arcs of the
path of the system. Now the points at which the path of the system intersects ¢ (if it
does so) can be ordered with respect to their values of ¢ and are denumerable. But for
the ergodic hypothesis to be true the path of the system would have to pass through all
the non-denumerable set of points of ¢. (This is a similar argument to one used by the
Ehrenfests ([1912], English edition 1959, footnote 98) to explain the difference between
the ergodic and quasi-ergodic hypotheses.)
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thereby changing the phase average but not the time average. The even
stronger assumption, that y can be decomposed into two invariant subsets
of non-zero measure with respect to p, is clearly inconsistent with ergodicity
by a slight modification of the same argument. Metric transitivity, which
is defined to be the negation of this assumption, is therefore a necessary
condition for ergodicity. That it is also a sufficient condition can be seen
quite simply by the following argument. Suppose that X were not constant
almost everywhere on v, then y can be decomposed into two invariant
subsets of non-zero measure with respect to p according to the values of
X and therefore it cannot be metrically transitive.

For the stationary Hamiltonian system &¢*", the Hamiltonian is an
isolating constant of motion and the energy surface 2'; is an invariant
subset of I'. If X', is metrically transitive then the system is ergodic on
2, and the microcanonical distribution, given in S3 level 4, is proved
(with the reservations described above with respect to exceptional points)
by the ergodic method. From this the canonical distribution can be
derived and the links between &¢*" and F¢7 are established.

Suppose that, besides the Hamiltonian, there exist other independent
isolating constants of motion. In this case it is clear’ that X' cannot be
metrically transitive and the development of statistical mechanics outlined
above is invalid. Only in the case of a system of more than two hard spheres,
contained within a parallelepiped box with perfectly elastic walls, has this
been proved rigorously not to be so (Sinai [1967]).2 In general the problems
of proving the non-existence of additional isolating constants of motion
is very difficult. It would therefore seem reasonable to investigate the
consequences of their existence. This has been done by Lewis [1960].
Beginning with the set of hypersurfaces, which represent almost every-
where all isolating constants of motion, he showed that the system is
ergodic on the set obtained as the intersection of vanishingly small shells
defined with respect to each hypersurface, the measure being the uniform
measure in phase space. On the basis of this it is possible to obtain generali-
sations of the microcanonical and canonical distributions. Unfortunately
the form of thermodynamics developed from these distributions differs
significantly from the standard form (Grad [1952]). In particular we have,
rather than one parameter representing temperature, a whole range of
parameters, one for each of the isolating constants of motion.

To circumvent the difficulties associated with metric transitivity and
the possible existence of additional isolating constants of motion, attempts
have been made to weaken the requirements of ergodicity in such a way

1 Any other isolating constant of motion will divide the energy surface into two invariant
subsets each of non-zero measure.
2 See also the discussion of Sinai’s results at the end of Farquhar [1967].
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as still to satisfy the needs of statistical mechanics. It is not difficult to
show (see e.g. Farquhar [1964]) that, for the measure density function p
and the invariant subset y, and for any € > o,

(M)

Measure [(p, q): @_ > e:| < 1/e? Variance I:XX :l, (12)

where the variance is calculated using the measure density function p.
In particular this result applies to the microcanonical measure over the
energy surface 2 ;. In order for this result to be of any use for our purpose
it is necessary to show that the right-hand side of equation (12) is small.
This is certainly not the case for arbitrary phase functions and systems
with any number of degrees of freedom. As we have already argued, the
reason for the introduction of methods, other than direct integration,
for dealing with the system % is, either that the system has a large
number of degrees of freedom, or that it is incompletely specified. Since
the assumption of incomplete specification seems to lead inevitably to
statistical methods, it seems reasonable to see the use of the ergodic method
as a consequence of the system having a large number of degrees of freedom.
Up to this point in our discussion of the ergodic method this feature has
played no role. But even in the case of systems with a large number of
degrees of freedom it is not necessarily the case that the variance of
XX is small for all X, Khinchin [1949] was however able to show
that if the Hamiltonian H and the phase function X‘*” are both sums of
contributions from the individual microsystems (sum functions) then the
variance of XX is of the order of 1/N. The unwanted restriction
represented by the Hamiltonian having to be a sum function has since
been removed by Mazur and van der Linden [1963], who considered the
asymptotic limit for V of sum functions for systems of particles interacting
through short-range hard-core interactions. Their argument requires an
assumption that the zeros of a certain polynomial related to the con-
figurational integral of the system are not dense in intervals of the real axis.
The difficulty again encountered with this approach is that we have in
some way to know that sets of small measure with respect to p have small
probability of occurrence.

I

The Evolution Method

Once some probability interpretation has been given to the measure
density function p, the measure M[y,] of any subset y, of I', at time ¢, will
be the probability of the phase point of the system being in y, at that time.
It is then clear why measure must be preserved by the Hamiltonian flow
since, if the set y, evolves into the set y, at time #', the phase point will be
in vy, at time ¢ if and only if it is in 7, at time #. The probability density
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function must therefore satisfy Liouville’s equation. We have defined
equilibrium for the thermodynamic system &¢7 as the state into which
F D evolves if left undisturbed for a sufficiently long period of time. The
most natural method of obtaining the equilibrium distribution would
therefore seem to be to investigate the solution of Liouville’s equation in
the limit as ¢ tends to infinity. This is part of the programme of the Brussels
School of statistical mechanics (see e.g. Prigogine [1970], Balescu [1971]).
These researchers trace the evolution of the Fourier coefficients of the
probability density function in terms of the destruction and creation of
interparticle correlations. They have succeeded in showing (at least for a
certain class of interparticle interactions) that, in the thermodynamic
limit, the dependence of the probability density function on initial correla-
tions decays in the infinite time limit. In this time limit the probability
density evolves to the canonical form. They would also claim to have
resolved the recurrence paradox of Zermelo ([1896]) and the reversibility
paradox of Loschmidt ([1876], [1877]). These paradoxes arise by counter-
posing, on the one hand the evolution to equilibrium of a thermodynamic
system, and on the other the quasi-periodic and time-symmetric behaviour
of a finite mechanical system. The recurrence problem is resolved by
taking the thermodynamic limit in which the recurrence time becomes
infinite. The reversibility problem is resolved by observing that, although
the initial correlations can be neglected at any stage in the evolution of the
system in the positive time direction, such a process is inadmissible if
time is reversed because in this direction the correlations remaining from
the initial state play an increasingly important role in the process by
which the system is returned to its initial state.

These brief comments are not intended to do full justice to this approach
to the solution of the basic problems of statistical mechanics. Particularly
so since the evolution method is essentially an approach to the whole
problem of the relationship between equilibrium and non-equilibrium
situations, this being an area still plagued by fundamental disagreements.
One thing however should be emphasised. The evolution method is not
tied to any particular philosophy of probability. It needs only some
interpretation of p as a probability density function in order to give it
validity.

The Ignorance Method

This method, based as it is on a logical view of probability, relies on a
principle by means of which, given a set of data, the appropriate equilibrium
probability density function can be derived. We shall adopt the formulation
of Hobson [1971]. As we have already indicated at level 2, he derives an
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expression for the uncertainty in a probability distribution and adopts the
principle that the appropriate distribution is that which maximises the
uncertainty relative to the given data. He shows that, if we make certain
reasonable assumptions regarding the nature of information measurement,
and if we suppose that the most accurate measurement on the system is
capable of locating the phase point in a cell of measure ¢(/V) then there is a
unique formula for uncertainty given by

S(e) = — | dTp(p, 9) In Vp(p, 9} (13)

The uncertainty is equated with the entropy, given in S2 level 4 equation
(7), when p has been adjusted to maximise S(p) with respect to the restric-
tions imposed on it by the available data.

Within the context of this approach, the purpose of statistical mechanics
is to predict values for the results of measurements. The thermodynamic
variable X(7 is taken to be the best prediction of a result of a measure-
ment of the corresponding phase function X . Since however, from
Tchebyshev’s inequality for any € > o,

0
<X
where (X is the expectation value of X, it is argued that (X) is the
best prediction for X, The right-hand side of the relationship (6) in
S2 level 4 is now, with p interpreted as a probability density function,
the expectation value of X and this relationship is given a justification.
It is further argued that the variance of X /(X is of the order of 1/N
and thus that the predictions made will increase in accuracy as N increases.
Although this can be established on physical grounds for certain phase
functions! a general statement of this kind would seem to rely on the kind
of result established by Khinchin and quoted, with respect to our dis-
cussion of equation (12), at the end of the section devoted to the ergodic
method.

The great advantage, from a teaching point of view, of this method is
that we are able to establish the microcanonical and canonical distributions
with the minimum of mathematical manipulation. All we need is some
simple applications of the method of undetermined multipliers. Its
weakness is that it makes no proper connection between the idea of
information and our detailed knowledge of the physical circumstances of
the system under investigation. This weakness is well illustrated by the
remark of Hobson ([1971] p. 84) to the effect that ‘the microcanonical

I

(M)
Probability [ X :|

> €:| < 1/e? Variance [<——X—>— , (14)

1 In the case where the phase function is the Hamiltonian the variance of H/{H) is equal
to kRCA(T|U)?, where Ca is the heat capacity of the system at constant A‘™’, and both
CA and U are of the order of N.
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distribution is generally regarded' as being applicable to closed systems
(i.e. systems having time-independent Hamiltonians), while the canonical
distribution is regarded! as being applicable to systems in weak interaction
with a second system, where the interaction is time-dependent but random
(7.e. not precisely known)’. The point is that physical considerations of
the type referred to in this quotation, must be built into the information
before the distributions are derived. If this is not done certain paradoxical
situations can arise. One such is contained in the following example? where
for the sake of simplicity we consider a system with discrete energy levels:

Given a system with non-degenerate energy levels E,<E,<<.... Suppose
that we are first given the datum D, that the energy lies in the closed
interval [E,, E,]. Then from Jaynes’ principle the appropriate distribution
is the discrete form of the microcanonical distribution

In 1<j<n
Prob [E,-ID]={ (15)

o otherwise

Suppose now, to quote Hobson ([1971], p. 107) ‘the energy E be measured
and let the datum be (E)=U, where U is given’. Referring to this new
piece of datum as D’ and using Jaynes’ principle we now have the discrete
form of the canonical distribution

{exp (—EB)IZ(B) 1<j<n
Prob [E;|D and D']= (16)
o otherwise
where
26 =3 9 (~Ef) (17)
and
- d1n Z(B)
~U="= (18)
Now
Prob [E;|D]= 3 Prob [E,|D and D'] Prob [D’|D] (19)
S,

and since D’ varies over all values of 8, which may be supposed to have a
density function p(8), we have

xp (—E; .
= [aprey LD icjaa (20)
But for j=1 and all p(B) except p(8)=28,(B)

exp (—E,B) exp (—E;f) 1
[ app(p) S22 > J BoB) oA =L (e
1 My italics.

% A form of this example was proposed by A. Shimony during a seminar at Chelsea College.
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As indicated above, a way to resolve this paradoxical situation would be
to divide information into two types: () The results of measurements.
We may, for example, know the energy of the system or the temperature
of a heat-bath in which the system is immersed. These are the kinds of
data with respect to which uncertainty has been maximised. (b) General
observations of a non-quantitative kind concerning the system. We may,
for example, observe that the system is, as far as possible, thermally
isolated, or we may observe that steps have been taken to ensure, as far as
possible, that it is in thermal contact with its environment. In the above
example D will properly consist, not simply of data concerning the range
of permitted energy levels, but it will also tell us that an attempt has been
made to isolate the system thermally, in which case 4E = E,—E, should
be small. Again D’ will consist, not simply of the piece of datum {E) = U,
but will also include the information that the system is in thermal equi-
librium with its environment. Thus the total information (D and D’) will
contain a contradiction and, if we wish to accept D’ then D must be
rejected as mistaken, invalidating the use of the conditional probability
formula (19).

While this point may seem relatively trivial, and by no means to indicate
a general failure of the method as a whole, it does need to be clarified in
the writings of those who use the ignorance method as their approach to
statistical mechanics.

The Ensemble Method

As we have already indicated in our discussion at level 2, the use (at least
verbally) of ensembles in statistical mechanics is both nearly universal
and shrouded with a certain amount of ambiguity. As a method of obtaining
the microcanonical and canonical distributions it does however have the
virtue of great simplicity particularly in the case of systems with discrete
energy levels (see e.g. Rushbrooke [1949]). In fact the mathematical
procedure is almost identical to that used in the ignorance method. The
difference between these two methods arises when we come to interpret
what in the ignorance method is the expectation value, featuring as the
best prediction about a single system, and what in the ensemble method is
the ensemble average representing a property, not of a single system, but
of the ensemble as a whole. One apparent advantage enjoyed by the en-
semble method in this connection (over both the ignorance and ergodic
methods) is in its treatment of the problem of the possible existence of
isolating constants of motion in addition to the Hamiltonian.

We have seen at level 4 that once a uniform distribution over an energy
shell has been assumed the microcanonical and canonical distributions
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can be rigorously derived. For a system for which only the energy is
known the Principle of Indifference provides the required distribution.
The impasse of the possible existence of additional isolating constants of
motion, which brings the ergodic method to a halt, is here resolved in a
very simple way. If we do not know the values of these constants (whether
we suspect their existence or not) we ignore them because we no longer
expect one single system to be precisely modelled by the ensemble
behaviour.

The difficulty with this argument is that the only way to test predictions
arising from statistical mechanics is to make measurements on an actual
system. Now suppose that the phase function X is an isolating constant
of motion independent of the Hamiltonian. The ensemble average will
predict the value for X7, the thermodynamic quantity corresponding to
X0 by taking an average over all the possible values for X9, whereas
for any one system the value of X‘* will be a constant which may differ
in any possible way from the ensemble average. To correctly model the
behaviour of the system in question we should choose a subensemble
with both H and X fixed which brings us back to the problem of
determining additional constants of motion. If this is not done it is difficult
to see how ensemble averages can be related to experimental measure-
ments. The problem becomes even worse in the case of entropy which is
directly related to the properties of the whole ensemble through our
choice of a distribution for phase points of the ensemble.! To refer to the
equations resulting from statistical mechanics as ‘analogues’ of the corres-
ponding thermodynamic equations (as do both Gibbs, ([1902], chapter 14)
and Tolman ([1938], chapter 13)) serves simply to confuse the issues.

FINAL DISCUSSION

I have in this paper tried to distinguish the possible strategies in terms of
which attempts have been made to base equilibrium thermodynamics on
the structure of the underlying mechanical system. The four headings at
level 3 (see diagram) do, as far as I can see, represent the four existing
methods. At the present stage of statistical mechanics it would seem to
be impossible to make a definitive choice between these methods except
on philosophical grounds. (Personal adherence to one or other view of
probability theory would lead to outright rejection of one or other of the
methods.) Within its own terms of reference each of these methods has
its strengths and weaknesses and it is the aim of this discussion to

1 For a system with discrete energy levels the entropy is equal to lim (% In 2)/n, where
n-ow0

n is the number of members of the ensemble and £ is the number of ways of distributing
these members over the energy levels.

S
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summarise these, giving, where possible, some indications of how the
weaknesses could be overcome.

The main strength of the ensemble method lies in its mathematical
simplicity. It also gives at least the appearance of conceptual simplicity,
especially if based on a scientific view of probability with the ensemble
interpreted as a collective in the sense of von Mises. In this way the fact
that the probability density function and the ensemble averages are
properties of the ensemble is not essentially different from the view of
von Mises ([1957], p. 12) that probability means ‘the probability of
encountering a certain attribute in a given collective’. The situation seems
more difficult when we consider the entropy. This quantity is a property
of the ensemble related to no phase function at the mechanical level of a
particular system (compare equations (6) and (7)). It therefore cannot,
even in principle, be envisaged as the result of a sequence of repeated
measurements. It may be possible to overcome this difficulty by some
change of philosophical position on probability (using for example Popper’s
idea of propensity in which probability is more closely related to an in-
dividual system) but I know of no discussion of this point.

For the ignorance method the probability density function is calculated
by maximising the uncertainty relative to a particular set of given data.
On the level of formal calculation this again gives a very simple method of
obtaining the probability density function appropriate to the information
that we have about the system. As we have seen there is a difficulty, well
illustrated by Shimony’s problem, if information is too narrowly inter-
preted. It does however seem possible to overcome this if we are prepared
to include more general non-quantitative observations as part of the known
data. A more important objection to this formulation relates to the depend-
ence of the probability density function on the state of knowledge of the
observer. This in turn means that the entropy of the system is dependent
on this state of knowledge. This seems to imply an anthropomorphic view
of entropy. Jaynes ([1965]) is fully prepared to accept this ‘not only in the
well-known statistical sense that it measures the extent of human ignorance
as to the microstate. Even at the purely phenomenological level, entropy
is an anthropomorphic concept. For it is a property, not of the physical
system, but of the particular experiments you or I choose to perform on
it’. The argument given by Jaynes for coming to this conclusion seem to
rely on the observation that, whenever a measurement is made of the
entropy of a system, only a subset of the possible variables of the system
is taken into account. There will always be other thermodynamic variables
which are implicitly assumed to remain constant. If we make an attempt
to list all the variables of the system and to obtain a general formula for
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the dependence of the entropy on the complete set then the task is, prac-
tically speaking, impossible. The entropy of the system will therefore be
dependent on just those variables whose existence we choose to acknow-
ledge and will thus be a function of the experiments we decide to perform.
This argument seems to mix together two quite different problems: (a)
the calculation of the entropy of a theoretical model, and () the corres-
pondence between the entropy of a theoretical model and the measured
entropy of a real system. We surely wish, for example, to say that the
Sackur-Tetrode equation is an ‘objective’ formula for the entropy of a
perfect gas in isothermal contact with its environment. The fact that no
real system is a perfect gas is a distinct issue. In spite of these comments
it must be admitted that the ignorance method seems, at least potentially,
to be a consistent solution to the basic problem of relating mechanics and
thermodynamics (not only at equilibrium but also in non-equilibrium
situations (see Hobson [1971])). If we are inclined to reject it, it will
ultimately be because we are not prepared to subscribe to this ‘subjective’
view of classical physics.

The important common factor shared by the ergodic and evolution
methods is their attempt to take seriously the dynamic character of the
underlying mechanical model. Some difficulties of the ergodic method have
been described. Briefly these are the problem of actually proving that a
system is ergodic on the energy hypersurface (ergodicity on an invariant
subset arising from the presence of other isolating constants of motion is
not satisfactory for statistical mechanics) and the need to attach ‘almost
everywhere’ conditions to the theorems which have been proved. With
respect to the latter difficulty we find ourselves in the trap of having to
assign zero probability to sets of measure zero in order to explain the
prevalence of thermodynamic behaviour in real systems. This problem
arises again in the context of equilibrium fluctuations. It is certainly
possible, once a measure on phase space has been derived, to calculate the
variance of phase functions. We need however to know that this variance
gives us some information about the spread of experimental measurements
about their mean. For this to be the case it is necessary that, in some sense,
the measure function should be construed as representing the probability
of the results of measurements. Otherwise the credit accorded to statistical
mechanics for its prediction of experimentally detectable equilibrium

! ‘Subjective’ is the term used by Jaynes to describe his philosophical position on prob-
ability. Any false impression which may be gained from this terminology is corrected
by Hobson who draws a clear distinction between the subjective (degrees of belief)
interpretation of Ramsey and de Finetti and his own position (and that of Jaynes)
which can be characterised by the quotation from Keynes given above (see also p. 257,
n. 1).
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fluctuations will be lost. The strength of the evolution method is that it
makes a direct attack on the problem of the approach to equilibrium,
deriving the equilibrium distribution as the long time limit of the solution
of Liouville’s equation. Its weaknesses are largely mathematical. By
using, as it does, various types of perturbation expansion it becomes
involved with uncontrolled approximations. It is difficult to obtain a clear
insight into the significance of neglecting higher order terms in these
expansions and it is virtually impossible to know whether their contribu-
tions to the evolution of the system are significant.

In conclusion it is worth emphasising that the purpose of this paper has
been to attempt a rational reconstruction of current programmes for the
foundations of statistical mechanics. It may be that some entirely novel
approach, not envisaged here, will be developed in the future. In view of
the successes of statistical mechanics at a practical level, it is difficult to
believe that there will not come a time when the difficulties discussed here
will be resolved. My own belief, for what it is worth, is that this resolution
will come about from an approach which studies in detail the dynamic
properties of the system. By this I do not of course mean that we should
revert to attempts to solve the equations of motion. Apart from the prac-
tical impossibility of doing this, such a programme would contribute little
to our understanding of the criteria for the class of mechanical systems
giving rise to thermodynamic behaviour. It does however seem possible
that a study of the qualitative properties of systems (see e.g. Abraham
[1967], Arnold and Avez [1968]) will be able to give insights in terms of
which the foundations of statistical mechanics can be better understood.

Chelsea College, University of London
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